
Linear Algebra Summary

1. Linear Equations in Linear Algebra

1.1 Definitions and Terms

1.1.1 Systems of Linear Equations

A linear equation in the variables x1, x2, . . ., xn is an equation that can be written in the form
a1x1 +a2x2 + . . . anxn = b, where a1, . . ., an are the coefficients. A system of linear equations (or a
linear system) is a collection of one or more linear equations involving the same variables. A solution
of a linear system is a list of numbers that makes each equation a true statement. The set of all possible
solutions is called the solution set of the linear system. Two linear systems are called equivalent if
they have the same solution set. A linear system is said to be consistent, if it has either one solution or
infinitely many solutions. A system is inconsistent if it has no solutions.

1.1.2 Matrices

The essential information of a linear system can be recorded compactly in a rectangular array called a
matrix. A matrix containing only the coefficients of a linear system is called the coefficient matrix,
while a matrix also including the constant at the end of a linear equation, is called an augmented
matrix. The size of a matrix tells how many columns and rows it has. An m × n matrix has m rows
and n columns.

There are three elementary row operations. Replacement adds to one row a multiple of another.
Interchange interchanges two rows. Scaling multiplies all entries in a row by a nonzero constant. Two
matrices are row equivalent if there is a sequence of row operations that transforms one matrix into
the other. If the augmented matrices of two linear systems are row equivalent, then the two systems have
the same solution set.

1.1.3 Matrix Types

A leading entry of a row is the leftmost nonzero entry in the row. A rectangular matrix is in echelon
form (and thus called an echelon matrix) if all nonzero rows are above any rows of all zeros, if each
leading entry of a row is in a column to the right to the leading entry of the row above it, and all entries
in a column below a leading entry are zeros. A matrix in echelon form is in reduced echelon form if
also the leading entry in each nonzero row is 1, and each leading 1 is the only nonzero entry in its column.
If a matrix A is row equivalent to an echelon matrix U , we call U an echelon form of A.

A pivot position in a matrix A is a location in A the corresponds to a leading 1 in the reduced echelon
form of A. A pivot column is a column of A that contains a pivot position. Variables corresponding to
pivot columns in the matrix are called basic variables. The other variables are called free variables.
A general solution of a linear system gives an explicit description of all solutions.
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1.1.4 Vectors

A matrix with only one column is called a vector. Two vectors are equal if, and only if, their corre-
sponding entries are equal. A vector whose entries are all zero is called the zero vector, and is denoted
by 0. If v1, . . ., vp are in Rn, then the set of all linear combinations of v1, . . ., vp is denoted by Span{v1,
. . ., vp} and is called the subset of Rn spanned by v1, . . ., vp. So Span{v1, . . ., vp} is the collection
of all vectors that can be written in the form c1v1 + c2v2 + . . . + cpvp with c1, c2, . . ., cp scalars.

1.1.5 Matrix Equations

If A is an m × n matrix, with columns a1, . . ., an, and if x is in Rn, then the product of A and x,
denoted by Ax, is the linear combination of the columns of A using the corresponding entries
in x as weights. That is, Ax = [a1 a2 . . . an]x = x1a1 + x2a2 + . . . + xnan. Ax is a vector in Rm.
An equation in the form Ax = b is called a matrix equation.

I is called an identity matrix, and has 1’s on the diagonal and 0’s elsewhere. In is the identity matrix
of size n× n. It is always true that Inx = x for every x in Rn.

1.1.6 Solution Sets of Linear Systems

A system of linear equations is said to be homogeneous if it can be written in the form Ax = 0.
Such a system always has the solution x = 0, which is called the trivial solution. The important
question is whether there are nontrivial solutions, that is, a nonzero vector x such that Ax = 0.
The total set of solutions can be described by a parametric vector equation, which is in the form
x = a1u1 + a2u2 + . . . + anun.

1.1.7 Linear Independence

An indexed set of vectors {v1, v2, . . ., vp} in Rn is said to be linearly independent if the vector
equation x1v1 + x2v2 + . . . + xpvp = 0 has only the trivial solution. The set is said to be linearly
dependent if there exist weights c1, c2, . . ., cp, not all zero, such that c1v1 + c2v2 + . . . + cpvp = 0. This
equation is called a linear dependence relation among v1, v2, . . ., vp. Also, the columns of a matrix
A are linearly independent if, and only if, the equation Ax = 0 has only the trivial solution.

1.1.8 Linear Transformations

A transformation (or function or mapping) T from Rn to Rm is a rule that assigns to each vector x
in Rn a vector T (x) in Rm. For x in Rn, the vector T (x) in Rm is called the image of x. The set Rn is
called the domain of T , and Rm is called the codomain. The set of all images T (x) is called the range
of T .

A mapping T : Rn → Rm is said to be onto Rm if each b in Rm is the image of at least one x in Rn.
That is, if the range and the codomain coincide. A mapping T : Rn → Rm is said to be one-to-one if
each b in Rm is the image of at most one x in Rn. If a mapping T : Rn → Rm is both onto Rm and
one-to-one, then for every b in Rm Ax = b has a unique solution. That is, there is exactly 1 x such that
Ax = b.
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1.2 Theorems

1. Each matrix is row equivalent to one, and only one, reduced echelon matrix.

2. A linear system is consistent if, and only if the rightmost column of the augmented matrix is not a
pivot column.

3. If a linear system is consistent, and if there are no free variables, there exists only 1 solution. If
there are free variables, the solution set contains infinitely many solutions.

4. A vector equation x1a1 + x2a2 + . . . + xnan = b has the same solution set as the linear system
whose augmented matrix is [a1 a2 . . . an b].

5. A vector b is in Span{v1, . . ., vp} if, and only if the linear system with augmented matrix
[v1 v2 . . . vp b] has a solution.

6. If A is an m× n matrix, and if b is in Rm, the matrix equation Ax = b has the same solution set
as the linear system whose augmented matrix is [a1 a2 . . . an b].

7. The following four statements are equivalent for a particular m × n coefficient matrix A. That is,
if one is true, then all are true, and if one is false, then all are false:

(a) For each b in Rm, the equation Ax = b has a solution.

(b) Each b in Rm is a linear combination of the columns of A.

(c) The columns of A span Rm.

(d) A has a pivot position in every row.

8. The homogeneous equation Ax = 0 has a nontrivial solution if, and only if the equation has at least
one free variable.

9. If the reduced echelon form of A has d free variables, then the solution set consists of a d-dimensional
plane (that is, a line is a 1-dimensional plane, a plane is a 2-dimensional plane), which can be
described by the parametric vector equation x = a1u1 + a2u2 + . . . + adud.

10. If Ax = b is consistent for some given b, and if Ap = b, then the solution set of Ax = b is the set
of all vectors w = p + v where v is any solution of Ax = 0.

11. A indexed set S = {v1, v2, . . ., vp} is linearly dependent if, and only if at least one of the vectors
in S is a linear combination of the others.

12. If a set contains more vectors than there are entries in each vector, then the set is linearly dependent.
That is, any set {v1, v2, . . ., vp} in Rn is linearly dependent if p > n.

13. If a set S = {v1, v2, . . ., vp} contains the zero vector 0, then the set is linearly dependent.

14. If T : Rn → Rm is a linear transformation, then there exists a unique matrix A such that T (x) = Ax
for all x in Rn. In fact, A = [ T (e1) T (e2) . . . T (en) ].

15. If T : Rn → Rm is a linear transformation, and T (x) = Ax, then:

(a) T is one-to-one if, and only if the equation T (x) = 0 has only the trivial solution.

(b) T is one-to-one if, and only if the columns of A are linearly independent.

(c) T maps Rn onto Rm if, and only if the columns of A span Rm.

16. If A and B are equally sized square matrices, and AB = I, then A and B are both invertible, and
A = B−1 and B = A−1.
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1.3 Calculation Rules

1.3.1 Vectors

Define the vectors u, v and w in Rn as follows:

u =


u1

u2

...
un

 , v =


v1

v2

...
vn

 , w =


w1

w2

...
wn

 (1.1)

If c is a scalar, then the following rules apply:

u + v =


u1 + v1

u2 + v2

...
un + vn

 (1.2)

cu =


cu1

cu2

...
cun

 (1.3)

1.3.2 Matrices

The product of a matrix A with size m× n and a vector x in Rn is defined as:

Ax = [a1 a2 . . . an]


x1

x2

...
xn

 = x1a1 + x2a2 + . . . + xnan (1.4)

Now the following rules apply:
A(u + v) = Au + Av (1.5)

A(cu) = c(Au) (1.6)

1.3.3 Linear Transformations

If a transformation (or mapping) T is linear, then:

T (0) = 0 (1.7)

T (cu + dv) = cT (u) + dT (v) (1.8)

Or, more general:

T (c1v1 + c2v2 + . . . + cpvp) = c1T (v1) + c2T (v2) + . . . + cpT (vp) (1.9)
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2. Matrix Algebra

2.1 Definitions and Terms

2.1.1 Matrix Entries

If A is an m × n matrix, then the scalar in the ith row and the jth column is denoted by aij . The
diagonal entries in a matrix are the numbers aij where i = j. They form the main diagonal of A.
A diagonal matrix is a square matrix whose nondiagonal entries are 0. An example is In. A matrix
whose entries are all zero is called a zero matrix, and denoted as 0. To matrices are equal if they have
the same size, and all their corresponding entries are equal.

2.1.2 Matrix Operations

If A and B are both m× n matrices, and A + B = C then C is also an m× n matrix whose entries are
the sum of the corresponding entries of A and B. If r is a scalar, then the scalar multiple C = rA is
the matrix whose entries are r times the corresponding entries of A.

Two matrices can be multiplied, by multiplying one matrix by the columns of the other matrix. If A is
an m×n matrix and B is an n×p matrix with columns b1, b2, . . ., bp, then the product AB is the m×p
matrix AB = A [ b1 b2 . . . bp] = [ Ab1 Ab2 . . . Abp]. Note that usually AB 6= BA. If AB = BA,
then we say that A and B commute with one another.

Since it is possible to multiply matrices, it is also possible to take their power. If A is a square matrix,
then Ak = A . . . A, where there should be k A’s. Also A0 is defined as In. Given an m × n matrix, the
transpose of A is the n×m matrix, denoted by AT , whose columns are formed from the corresponding
rows of A. So rowi(A) = coli(AT ). The transpose should not be confused by a matrix to the power T .

2.1.3 Inverses

An n×n (square) matrix A is said to be invertible if there is an n×n matrix C such that CA = In = AC.
In this case C is the inverse of A, denoted as A−1. A matrix that is not invertible is called a singular
matrix. For a 2-dimensional matrix, the quantity a11a22 − a12a21 is called the determinant, noted as
detA = ad− bc. An elementary matrix is a matrix that is obtained by performing a single elementary
row operation on an identity matrix.

A linear transformation T : Rn → Rn is said to be invertible if there exists a function S : Rn → Rn such
that S(T (x)) = x and T (S(x)) = x for all x in Rn. We call S the inverse of T and write it as S = T−1

or S(x) = T−1(x). If T (x) = Ax, then A is called the standard matrix of the linear transformation T .

2.1.4 Subspaces

A subspace of Rn is any set H in Rn for which three properties apply. The zero vector 0 is in H, for
each u and v in H, the sum u+v is in H, and for each u in H, the vector cu is in H (for every scalar c).
Subspaces are always a point (0-dimensional) on the origin, a line (1-dimensional) through the origin, a
plane (2-dimensional) through the origin, or any other multidimensional plane through the origin.
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The column space of a matrix A is the set Col A of all linear combinations of the columns of A. The
column space of an m×n matrix is a subspace of Rm. The row space of a matrix A is the set Row A of
all linear combinations of the rows of A. The null space of a matrix A is the set Nul A of all solutions
to the homogeneous equation Ax = 0. The null space of an m× n matrix is a subspace of Rn. A basis
for a subspace H or Rn is a linearly independent set in H that spans H.

2.1.5 Dimension and Rank

Suppose the set β = {b1, . . . ,bp} is a basis for a subspace H. For each x in H, the coordinates of
x relative to the basis β are the weights c1, . . ., cp such that x = c1b1 + . . . + cpbp. The vector
[x]β in Rp with coordinates c1, . . ., cp is called the coordinate vector of x (relative to β) or the
beta-coordinate vector of x.

The dimension of a subspace H, denoted by dim H, is the number of vectors in any basis for H. The
zero subspace has no basis, since the zero vector itself forms a linearly dependent set. The rank of a
matrix A, denoted by rank A, is the dimension of the column space of A. So per definition rank A =
dim Col A.

2.1.6 Kernel and Range

Let T be a linear transformation. The kernel (or null space) of T , denoted as ker T , is the set of all u
such that T (u) = 0. The range of T , denoted as range T , is the set of all vectors v for which T (x) = v
has a solution. If T (x) = Ax, then the kernel of T is the null space of A, and the range of T is the column
space of A.

2.2 Theorems

1. The Row-Column Rule. If A is an m × n matrix, and B is an n × p matrix, then the entry in
the ith row and the jth column of AB is (AB)ij = ai1b1j + ai2b2j + . . . + ainbnj .

2. From the Row-Column Rule can be found that rowi(AB) = rowi(A) ·B.

3. If A has size 2× 2. If ad− bc 6= 0, then A is invertible, and A−1 = 1
ad−bc

[
d −b

−c a

]
.

4. If A is an invertible matrix, then for each b in Rn, the equation Ax = b has the unique solution
x = A−1b.

5. If A is invertible, then A−1 is invertible, and (A−1)−1 = A.

6. If A and B are n× n matrices, then so is AB, and the inverse of AB is the product of the inverses
of A and B in the reverse order. That is, (AB)−1 = B−1A−1. This also goes for any number of
matrices. That is, if A1, . . ., Ap are n× n matrices, then (A1A2 . . . Ap)−1 = A−1

p . . . A−1
2 A−1

1 .

7. If A is an invertible matrix, then so is AT , and the inverse of AT is the transpose of A−1. That is,
(AT )−1 = (A−1)T .

8. If an elementary row operation is performed on an m × n matrix A, the resulting matrix can be
written as EA, where the m × m elementary matrix E is created by performing the same row
operation on Im.
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9. Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type
that transforms E back into I.

10. An n × n matrix A is invertible if, and only if A is row equivalent to In, and in this case, any
sequence of elementary row operations that reduces A to In also transforms In into A−1.

11. Let T : Rn → Rn be a linear transformation, and let A be the standard matrix for T . That
is, T (x) = Ax. Then T is invertible if, and only if A is an invertible matrix. In that case,
T−1(x) = A−1x.

12. If u1, . . ., up are in the subspace H, then every vector in Span{u1, . . . ,up} is in H.

13. If A is an m× n matrix with column space Col A, then Col A = Span{a1, . . . ,an}. Also Col A is
the set of all b for which Ax = b has a solution.

14. The pivot columns of a matrix A form a basis for the column space of A.

15. The dimension of Nul A is equal to the number of free variables in Ax = 0.

16. The dimension of Col A (which is rank A) is equal to the number of pivot columns in A.

17. The Rank Theorem. If a matrix A has n columns, then dim Col A + dim Nul A = rank A +
dim Nul A = n.

18. The Basis Theorem. Let H be a p-dimensional subspace of Rn. Any linearly independent set of
exactly p elements in H is automatically a basis for H. Also any set of p elements of H that spans
H is automatically a basis for H.

19. If the linear transformation T (x) = Ax, then ker T = Nul A and range T = Col A.

20. If Rn is the domain of T , then dim ker T + dim range T = n.

21. If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon
form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

22. The Invertible Matrix Theorem. The following statements are equivalent for a particular
square n × n matrix A (be careful: these statements are not equivalent for rectangular matrices).
That is, if one is true, then all are true, and if one is false, then all are false:

(a) A is an invertible matrix.

(b) A is row equivalent to the n× n identity matrix In.

(c) A has n pivot positions.

(d) The equation Ax = 0 has only the trivial solution.

(e) The columns of A form a linearly independent set.

(f) The linear transformation x 7→ Ax is one-to-one.

(g) The equation Ax = b has at least one solution for each b in Rn. That is, the mapping x 7→ Ax
is onto Rn.

(h) The columns of A span Rn.

(i) The linear transformation x 7→ Ax maps Rn onto Rn.

(j) There is an n× n matrix C such that CA = I = AC.

(k) The transpose AT is an invertible matrix.

(l) The columns of A form a basis of Rn.

(m) Col A = Rn
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(n) dim Col A = rank A = n

(o) Nul A = 0

(p) dim Nul A = 0

(q) det A 6= 0 (The definition for determinants will be given in chapter 3.)

(r) The number 0 is not an eigenvalue of A (The definition for eigenvalues will be given in chapter
5.)

2.3 Calculation Rules

2.3.1 Algebraic Definitions

If A, B and C are m× n matrices, then the addition and multiplication is defined as:

A + B =


a11 . . . a1n

...
...

am1 . . . amn

 +


b11 . . . b1n

...
...

bm1 . . . bmn

 =


(a11 + b11) . . . (a1n + b1n)

...
...

(am1 + bm1) . . . (amn + bmn)

 (2.1)

rA = r


a11 . . . a1n

...
...

am1 . . . amn

 =


ra11 . . . ra1n

...
...

ram1 . . . ramn

 (2.2)

It is also possible to multiply matrices. If A is an m× n matrix and B is an n× p matrix with columns
b1, b2, . . ., bn, then the product AB is the m× p matrix:

AB = A [ b1 b2 . . . bp] = [ Ab1 Ab2 . . . Abp] (2.3)

Note that AB 6= BA. Also, their power is:

Ak = A . . . A (k times) (2.4)

The transpose of a matrix is defined as:

A =


a11 . . . a1n

...
...

am1 . . . amn

 ⇒ AT =


a11 . . . am1

...
...

a1n . . . anm

 (2.5)

2.3.2 Algebraic Rules

The following rules apply for matrix addition.

A + B = B + A (2.6)

(A + B) + C = A + (B + C) (2.7)

A + 0 = A (2.8)

r(A + B) = rA + rB (2.9)
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(r + s)A = rA + sA (2.10)

r(sA) = (rs)A (2.11)

For matrix multiplication, the following rules apply.

A(BC) = (AB)C (2.12)

A(B + C) = AB + AC (2.13)

(B + C)A = BA + CA (2.14)

r(AB) = (rA)B = A(rB) (2.15)

ImA = A = AIn (2.16)

A0 = In (2.17)

Iu = u (2.18)

The following rules apply for matrix transposes.

(AT )T = A (2.19)

(A + B)T = AT + BT (2.20)

(rA)T = r(AT ) (2.21)

(AB)T = BT AT (2.22)
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3. Determinants

3.1 Definitions and Terms

3.1.1 Determinants

For any square matrix, let Aij denote the submatrix formed by deleting the ith row and the jth column
of A. For n ≥ 2, the determinant of an n × n matrix A = [aij ] is the sum of n terms of the form
±a1jdet A1j , with plus and minus signs alternating, where the entries a11, a12, . . . , a1n are from the first
row of A. In symbols:

det A = a11det A11 − a12det A12 + . . . + (−1)n+1a1ndet A1n =
n∑

j=1

(−1)1+ja1jdet A1j

Next to writing det A to indicate a determinant, it is also often used to write |A|.

3.1.2 Cofactors

Given A = [aij ], the (i, j)-cofactor of A is the number Cij given by Cij = (−1)i+jdet Aij . The
determinant of A can be determined using a cofactor expansion. The formula det A = a11C11 +a12C12 +
. . . a1nC1n is called a cofactor expansion across the first row of A.

A matrix B = [bij ] of cofactors of A, where bij = Cij , is called the adjugate (or classical adjoint) of
A. This is denoted by adjA.

3.2 Theorems

1. The determinant of an n × n matrix A can be computed by a cofactor expansion. The expansion
across the ith row is: det A = ai1Ci1 + ai2Ci2 + . . . + ainCin. The expansion down the jth column
is: det A = a1jC1j + a2jC2j + . . . + anjCnj .

2. If A is a triangular matrix, then det A is the product of the entries on the main diagonal of A.

3. Row Operations: Let A be a square matrix.

• If a multiple of one row of A is added to another row to produce a matrix B, then det A =
det B.

• If two rows of A are interchanged to produce B, then detA = −detB.

• If one row of A is multiplied by k to produce B, then det B = k · det A.

4. A square matrix A is invertible if, and only if det A 6= 0.

5. If A is an n× n matrix, then det AT = det A.

6. If A and B are n× n matrices, then det AB = (det A)(det B).

7. Cramer’s Rule: Let A be an invertible n× n matrix. For any b in Rn, the unique solution x of
Ax = b has entries given by xi = det Ai(b)

det A , where i = 1, 2, . . . , n and Aib is the matrix obtained
from A by replacing column i for the vector b.
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8. Let A be an invertible n× n matrix. Then: A−1 = 1
det AadjA.

9. If A is a 2× 2 matrix, the area of the parallelogram determined by the columns of A is |det A|. If
A is a 3× 3 matrix, the volume of the parallelepiped determined by the columns of A is |det A|.

10. Let T : R2 → R2 be the linear transformation determined by a 2 × 2 matrix A. If S is any
region in R2 with finite area, then {area of T (S)} = |det A| · {area of S}. Also, if T is determined
by a 3 × 3 matrix A, and if S is any region in R3 with finite volume, then {volume of T (S)} =
|det A| · {volume of S}.
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4. Vector Spaces and Subspaces

4.1 Definitions and Terms

4.1.1 Vector Spaces

A vector space is a nonempty set V of objects, called vectors, on which are defined two operations,
called addition and multiplication by scalars, subject to the ten axioms listed in paragraph 4.3. As was
already mentioned in the chapter Matrix Algebra, a subspace of a vector space V is a subset H of V
that has three properties:

1. The zero vector of V is in H.
2. H is closed under vector addition. That is, for each u and v in H, the sum u + v is in H.
3. H is closed under multiplication by scalars. That is, for each u in H and each scalar c, the vector

cu is in H.
If v1, . . . ,vp are in a vector space V , then Span{v1, . . . ,vp} is called the subspace spanned by
v1, . . . ,vp. Given any subspace H of V , a spanning set for H is a set v1, . . . ,vp in H such that
H = Span{v1, . . . ,vp}.

4.1.2 Bases

Let H be a subspace of a vector space V . An indexed set of vectors β = {b1, . . . ,bp} in V is a basis
for H if β is a linearly independent set, and the subspace spanned by β coincides with H, that is,
H = Span{b1, . . . ,bp}. The set {e1, . . . , en} is a standard basis for Rn. The set {1, t, . . . , tn} is a
standard basis for Pn.

4.1.3 Coordinate Systems

Suppose β = {b1, . . . ,bn} is a basis for V and x is in V . The coordinates of x relative to the basis
β (or the β-coordinates of x) are the weights c1, . . . , cn such that x = c1b1 + . . . + cnbn. If c1, . . . , cn

are the β-coordinates of x, then the vector [x]β in Rn (consisting of c1, . . . , cn) is the coordinate vector
of x (relative to β), or the β-coordinate vector of x. The mapping x 7→ [x]β is the coordinate
mapping (determined by β).

If Pβ = [b1 . . . bn ], then the vector equation x = c1b1 + . . . + cnbn is equivalent to x = Pβ [x]β . We
call Pβ the change-of-coordinates matrix from β to the standard basis Rn. Since Pβ is invertible
(invertible matrix theorem), also [x]β = P−1

β x.

4.1.4 Vector Space Dimensions

If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V ,
written as dim V , is the number of vectors in a basis for V . The dimension of the zero vector space {0}
is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.
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4.2 Theorems

1. If v1, . . . ,vp are in a vector space V , then Span{v1, . . . ,vp} is a subspace of V .

2. Let S = {e1, . . . , en} be a set in V , and let H = Span{e1, . . . , en}. If one of the vectors in S, say,
vk, is a linear combination of the remaining vectors in S, then the set formed from S by removing
vk still spans H.

3. Let S = {e1, . . . , en} be a set in V , and let H = Span{e1, . . . , en}. If H 6= {0}, some subset of S
is a basis for H.

4. Let β = {b1, . . . ,bn} be a basis for a vector space V . Ten for each x in V , there exists a unique
set of scalars c1, . . . , cn such that x = c1b1 + . . . + cnbn.

5. Let β = {b1, . . . ,bn} be a basis for a vector space V , and let Pβ = [b1 . . . bn ]. Then the
coordinate mapping x 7→ [x]β is a one-to-one linear transformation from V onto Rn.

6. If a vector space V has a basis β = {b1, . . . ,bn}, then any set in V containing more than n vectors
must be linearly dependent.

7. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

8. Let H be a subspace of a finite-dimensional vector space V . Any linearly independent set in H can
be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and dim H ≤ dim V .

9. The Basis Theorem: Let V be a p-dimensional vector space, p ≥ 1. Any linearly independent
set of exactly p elements in V is automatically a basis for V . Any set of exactly p elements that
spans V is automatically a basis for V .

4.3 Vector Space Axioms

The following axioms must hold for all the vectors u, v and w in the vector space V and all scalars c
and d.

1. The sum of u and v, denoted by u + v, is in V .

2. u + v = v + u.

3. (u + v) + w = u + (v + w).

4. There is a zero vector 0 in V such that u + 0 = u.

5. For each u in V , there is a vector −u in V such that u + (−u) = 0.

6. The scalar multiple of u by c, denoted by cu, is in V .

7. c(u + v) = cu + cv.

8. (c + d)u = cu + du.

9. c(du) = (cd)u.

10. 1u = u.

13



5. Eigenvalues and Eigenvectors

5.1 Definitions and Terms

5.1.1 Introduction to Eigenvectors and Eigenvalues

An eigenvector of an n × n matrix A is a nonzero vector x such that Ax = λx for some scalar λ. A
scalar λ is called an eigenvalue of A if there is a nontrivial solution x of Ax = λx. Such an x is called
an eigenvector corresponding to λ. The set of all eigenvectors corresponding to λ is a subspace of
Rn and is called the eigenspace of A corresponding to λ.

5.1.2 The Characteristic Equation

The scalar equation det(A−λI) = 0 is called the characteristic equation of A. If A is an n×n matrix,
then det(A − λI) is a polynomial of degree n called the characteristic polynomial of A. A specific
eigenvalue λs is said to have multiplicity r if (λ − λs) occurs r times as a factor of the characteristic
polynomial.

If A and B are n × n matrices, then A and B are similar if there is an invertible matrix P such that
P−1AP = B. Changing A into P−1AP is called a similarity transformation.

5.1.3 Diagonalization

A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is, if A = PDP−1

for some invertible matrix P and some diagonal matrix D. The basis formed by all the eigenvectors of a
matrix A is called the eigenvector basis.

5.1.4 Eigenvectors and Linear Transformations

Let V be an n-dimensional vector space, W an m-dimensional vector space, T any linear transformation
from V to W , β a basis for V and γ a basis for W . Now the image of any vector [x]β (the vector x relative
to the base β) to [T (x)]γ is given by [T (x)]γ = M [x]β , where M = [[T (b1)]γ [T (b2)]γ . . . [T (bn)]γ ]. The
m×n matrix M is a matrix representation of T , called the matrix for T relative to the bases β and
γ.

In the common case when W is the same as V , and the basis γ is the same as β, the matrix M is
called the matrix for T relative to β or simply the β-matrix for T and is denoted by [T ]β . Now
[T (x)]β = [T ]β [x]β .

5.1.5 Complex Eigenvalues

A complex scalar λ satisfies det(A − λI) = 0 if, and only if there is a nonzero vector x in Cn such that
Ax = λx. We call λ a (complex) eigenvalue and x a (complex) eigenvector corresponding to λ.
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5.1.6 Dynamical Systems

Many dynamical systems can be described or approximated by a series of vectors xk where xk+1 = Axk.
The variable k often indicates a certain time variable. If A is a diagonal matrix, having n eigenvalues
forming a basis for Rn, any vector xk can be described by xk = c1(λ1)kv1 + . . . + cn(λn)kvn. This is
called the eigenvector decomposition of xk.

The graph x0,x1, . . . is called a trajectory of the dynamical system. If, for every x0, the trajectory
goes to the origin 0 as k increases, the origin is called an attractor (or sometimes sink). If, for every
x0, the trajectory goes away from the origin, it is called a repellor (or sometimes source). If 0 attracts
for certain x0 and repels for other x0, then it is called a saddle point. For matrices having complex
eigenvalues/eigenvectors, it often occurs that the trajectory spirals inward to the origin (attractor) or
outward (repellor) from the origin (the origin is then called a spiral point).

5.1.7 Differential Equations

Linear algebra comes in handy when differential equations take the form x′ = Ax. The solution is then
a vector-valued function that satisfies x′ = Ax for all t in some interval. There is always a fundamental
set of solutions, being a basis for the set of all solutions. If a vector x0 is specified, then the initial
value problem is to construct the function such that x′ = Ax and x(0) = x0.

5.2 Theorems

1. The solution set of Ax = λx is the null space of A− λI. This is the eigenspace corresponding to λ.

2. The eigenvalues of a triangular matrix are the entries on its main diagonal.

3. 0 is an eigenvalue of A if, and only if A is not invertible.

4. If v1, . . . ,vr are eigenvectors that correspond to distinct eigenvalues λ1, . . . , λr of an n× n matrix
A, then the set {v1, . . . ,vr} is linearly independent.

5. A scalar λ is an eigenvalue of an n×n matrix A if, and only if λ satisfies the characteristic equation
det(A− λI) = 0.

6. If n×n matrices A and B are similar, then they have the same characteristic polynomial and hence
the same eigenvalues (with the same multiplicities).

7. The Diagonalization Theorem: An n × n matrix A is diagonalizable if, and only if A has n
linearly independent eigenvectors. In fact, A = PDP−1, with D a diagonal matrix, if, and only if
the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of
D are eigenvalues of A that correspond, respectively, to the eigenvectors in P .

8. If a n × n matrix has n distinct eigenvalues, then it is diagonalizable. (Note that the opposite is
not always true.)

9. Let A be an n× n matrix whose distinct eigenvalues are λ1, . . . , λp.

(a) For 1 ≤ k ≤ p, the dimension of the eigenspace for λk is less than or equal to the multiplicity
of the eigenvalue λk.

(b) The matrix A is diagonalizable if, and only if the sum of the dimensions of the distinct
eigenspaces equals n, and this happens if, and only if the dimension of the eigenspace for
each λk equals the multiplicity of λk.
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(c) If A is diagonalizable and βk is a basis for the eigenspace corresponding to λk for each k, then
the total collection of vectors in the sets β1, . . . , βp forms an eigenvector basis for Rn.

10. Diagonal Matrix Representation: Suppose A = PDP−1, where D is a diagonal n× n matrix.
If β = {b1, . . . ,bn} is the basis for Rn formed from the columns of P , then D is the β-matrix for
the transformation x 7→ Ax.

11. If P is the matrix whose columns come from the vectors in β (that is, P = [b1 . . . bn]), then
[T ]β = P−1AP .

12. If λ is an eigenvalue of A and x is a corresponding eigenvector in Cn, then the complex conjugate
λ̄ is also an eigenvalue of A, with x̄ as the corresponding eigenvector.

13. Let A be a real 2 × 2 matrix with a complex eigenvalue λ = a − bi (b 6= 0) and an associated

eigenvector v in C2. Then A = PCP−1, where P = [Rev Imv] and C =

[
a −b

b a

]
.

14. For discrete dynamical systems, multiple possibilities are present:

(a) |λi| < 1 for every i. In that case the system is an attractor.

(b) |λi| > 1 for every i. In that case the system is a repellor.

(c) |λi| > 1 for some i and |λi| < 1 for all other i. In that case the system is a saddle point.

(d) |λi| = 1 for some i. In that case the trajectory can converge to any vector in the eigenspace
corresponding to the eigenvalue 1. However, it can also diverge.

15. For linear differential equations, each eigenvalue-eigenvector pair provides a solution of x′ = Ax.
This solution is x(t) = veλt.

16. For linear differential equations, any linear combination of solutions is also a solution for the dif-
ferential equation. So if u(t) and v(t) are solutions, then cu(t) + dv(t) is also a solution for any
scalars c and d.
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6. Orthogonality and Least Squares

6.1 Definitions and Terms

6.1.1 Basics of Vectors

Two vectors u and v in Rn can be multiplied with each other, using the dot product, also called
the inner product, which produces a scalar value. It is denoted as u · v, and defined as u · v =
u1v1 + . . . + unvn. The length of a vector u, sometimes also called the norm, is denoted by ‖u‖. It is
defined as ‖u‖ =

√
u · u =

√
u2

1 + . . . + u2
n.

A unit vector is a vector whose length is 1. For any nonzero vector u, the vector u
‖u‖ is a unit vector in

the direction of u. This process of creating unit vectors is called normalizing. The distance between
u and v, written as dist(u,v), is the length of the vector v − u. That is, dist(u,v) = ‖v − u‖.

6.1.2 Orthogonal Sets

Two vectors u and v in Rn are orthogonal if u · v = 0. If z is orthogonal to every vector in a subspace
W , then z is said to be orthogonal to W . The set of all vectors z that are orthogonal to W is called
the orthogonal complement of W , and is denoted by W⊥.

A set of vectors {u1, . . ., un} in Rn is said to be an orthogonal set if each pair of distinct pair of vectors
is orthogonal, that is, if ui · uj = 0 whenever i 6= j. An orthogonal basis for a subspace W of Rn is a
basis for W of Rn is a basis for W that is also an orthogonal set.

6.1.3 Orthonormal Sets

A set of vectors {u1, . . ., un} in Rn is an orthonormal set if it is an orthogonal set of unit vectors.
If W is the subspace spanned by such a set, then {u1, . . ., un} is an orthonormal basis for W . An
orthogonal matrix is a square invertible matrix U such that U−1 = UT . Such a matrix always has
orthonormal columns.

6.1.4 Decomposing Vectors

If u is any nonzero vector in Rn, then it is possible to decompose any vector y in Rn into the sum of two
vectors, one being a multiple of u, and one being orthogonal to it. The projection ŷ (being the multiple
of u) is called the orthogonal projection of y onto u, and the component of y orthogonal to u is,
surprisingly, called the component of y orthogonal to u.

Just like it is possible to project vectors on a vector, it is also possible to project vectors on a subspace.
The projection ŷ onto the subspace W is called the orthogonal projection of y onto W . ŷ is sometimes
also called the best approximation to y by elements of W .
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6.1.5 The Gram-Schmidt Process

The Gram-Schmidt Process is an algorithm for producing an orthogonal or orthonormal basis {u1,
. . ., up} for any nonzero subspace of Rn. Let W be the subspace, having basis {x1, . . ., xp}. Let u1 = x1

and ui = xi − x̂i for 1 < i ≤ n, where x̂i is the projection of xi on the subspace with basis {u1, . . .,
ui−1}. In formula: u1 = x1 and ui = xi − (xi·v1

v1·v1
v1 + . . . + xi·vi−1

vi−1·vi−1
vi−1).

6.1.6 Least-Squares Problem

The general least-squares problem is to find an x that makes ‖b−Ax‖ as small as possible. If A is
m×n and b is in Rm, a least-squares solution of Ax = b is an x̂ in Rn such that ‖b−Ax̂‖ ≤ ‖b−Ax‖
for all x in Rn. When a least-squares solution x̂ is used to produce Ax̂ as an approximation of b, the
distance from b to Ax̂ is called the least-squares error of this approximation.

6.1.7 Linear Models

In statistical analysis of scientific and engineering data, there is commonly a different notation used.
Instead of Ax = b, we write Xβ = y and refer to X as the design matrix, β as the parameter vector,
and y as the observation vector.

Suppose we have a certain amount of measurement data which, when plotted, seem to lie close to a
straight line. Let y = β0 + β1x. The difference between the observed value (from the measurements)
and the predicted value (from the line) is called a residual. The least-squares line is the line that
minimizes the sum of the squares of the residuals. This line is also called a line of regression of y on
x. The coefficients β0 and β1 are called (linear) regression coefficients.

The previous system is equivalent to solving the least-squares solution of Xβ = y if X = [ 1 x ] (where
1 has entries 1, 1, . . ., 1, and x has entries x1, . . ., xn), β has entries β0 and β1 and y has entries y1, . . .,
yn. A common practice before computing a least-squares line is to compute the average x̄ of the original
x-values, and form a new variable x∗ = x− x̄. The new x-data are said to be in mean-deviation form.
In this case, the two columns of X will be orthogonal.

The residual vector ε is defined as ε = y −Xβ. So y = Xβ + ε. Any equation in this form is referred
to as a linear model, in which ε should be minimized.

6.1.8 Inner Product Spaces

An inner product on a vector space V is a function that, to each pair of vectors u and v in U , associates
a real number 〈u,v〉 and satisfies the following axioms, for all u, v, w in V and all scalars c:

1. 〈u,v〉 = 〈v,u〉
2. 〈u + v,v〉 = 〈u,w〉+ 〈v,w〉
3. 〈cu,v〉 = c〈u,v〉
4. 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 if, and only if u = 0

A vector space with an inner product is called an inner product space.

6.2 Theorems

1. Consider the vectors u and v as n× 1 matrices. Then, u · v = uT v.

18



2. If u 6= 0 and v 6= 0 then u and v are orthogonal if, and only if u · v = 0.

3. Two vectors u and v are orthogonal if, and only if ‖u + v‖2 = ‖u‖2 + ‖v‖2.

4. A vector z is in W⊥ if, and only if z is orthogonal to every vector in a set that spans W .

5. W⊥ is a subspace of Rn.

6. If A is an m× n matrix, then ( RowA)⊥ = NulA and ( ColA)⊥ = NulAT .

7. If A is an m× n matrix, then RowA = ColAT .

8. If S = {u1, . . ., up} is an orthogonal set of nonzero vectors in Rn, then S is linearly independent
and hence is a basis for the subspace spanned by S.

9. Let {u1, . . ., up} be an orthogonal basis for a subspace W of Rn. For each y in W , the weights in
the linear combination y = c1u1 + . . . + cpup are given by cj = y·uj

uj·uj
= y·uj

‖uj‖2 .

10. An m× n matrix U has orthonormal columns if, and only if UT U = I.

11. Let U be an m× n matrix with orthonormal columns, and let x and y be in Rn, then:

(a) ‖Ux‖ = ‖x‖
(b) (Ux) · (Uy) = x · y
(c) (Ux) · (Uy) = 0 if, and only if x · y = 0.

12. If U is a square matrix, then U is an orthogonal matrix if, and only if its columns are orthonormal
columns. The rows of an orthogonal matrix are also orthonormal rows.

13. If y and u are any nonzero vectors in Rn, then the orthogonal projection of y onto u is ŷ = y·uj

uj·uj
u =

y·uj

‖uj‖2 u, and the component z of y orthogonal to u is z = y − ŷ.

14. Let W be a subspace of Rn. Then each y in Rn can be written uniquely in the form y = ŷ + z
where ŷ is in W and z is in W⊥. In fact, if {u1, . . ., up} is any orthogonal basis of W , then
ŷ = y·u1

u1·u1
u1 + . . . + y·up

up·up
up, and z = y − ŷ.

15. The Best Approximation Theorem. Let W be a subspace of Rn, y any vector in Rn, and ŷ
the orthogonal projection of y onto W . Then ŷ is the closest point in W to y, in the sense that
‖y − ŷ‖ < ‖y − u‖ for all u 6= ŷ in W .

16. If {u1, . . ., up} is an orthonormal basis for a subspace W of Rn, then ŷ = (y·u1)u1+. . .+(y·up)up.
If U = [ u1 . . . up ], then ŷ = UUT y for all y in Rn.

17. The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the
normal equations AT Ax = AT b.

18. The matrix AT A is invertible if, and only if the columns of A are linearly independent. In that case,
the equation Ax = b has only one least-squares solution x̂, and it is given by x̂ = (AT A)−1AT b.
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6.3 Calculation Rules

6.3.1 Algebraic Definitions

The dot product of vectors u and v in Rn is defined as:

u · v =


u1

...
un

 ·


v1

...
vn

 = u1v1 + . . . unvn (6.1)

The length of a vector is defined as:

‖u‖ =
√

u · u =
√

u2
1 + . . . + u2

n (6.2)

6.3.2 Algebraic Rules

The following rules apply for the dot product:

u · v = v · u (6.3)

(u + v) ·w = u ·w + v ·w (6.4)

(cu) · v = c(u · v) = u · (cv) (6.5)

u · v = uT v (6.6)

The following rules apply for vector lengths:

‖cu‖ = |c|‖u‖ (6.7)

u · v = ‖u‖‖v‖ cos θ (6.8)

Where θ is the angle between vectors v and u.
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7. Symmetric Matrices and Quadratic Forms

7.1 Definitions and Terms

7.1.1 Diagonalization of Symmetric Matrices

A symmetric matrix is a square matrix such that AT = A. A matrix A is said to be orthogonally
diagonalizable if there are an orthogonal matrix P (so P−1 = PT ) and a diagonal matrix D such
that A = PDPT = PDP−1. An orthogonally diagonalizable matrix A with orthonormal eigenvectors
u1 . . .un can be written as A = λ1u1u1

T + . . .+λnunun
T . This representation of A is called a spectral

decomposition of A. Furthermore, each matrix ujuj
T is a projection matrix.

7.1.2 Quadratic Forms

A quadratic form on Rn is a function Q defined on Rn whose value at a vector x in Rn can be computed
by an expression of the form Q(x) = xT Ax, where A is an n × n symmetric matrix. The matrix A is
called the matrix of the quadratic form.

If x represents a variable vector in Rn, then a change of variable is an equation of the form x = Py,
where P is an invertible matrix and y is a new variable vector in Rn. Now xT Ax = yT (PT AP )y. If P
diagonalizes A, then PT AP = P−1AP = D, in which D is a diagonal matrix. The columns op P are
called the principal axes of the quadratic form xT Ax.

A quadratic form Q is per definition:
• positive definite if Q(x) > 0 for all x 6= 0.
• negative definite if Q(x) < 0 for all x 6= 0.
• positive semidefinite if Q(x) ≥ 0 for all x 6= 0.
• negative semidefinite if Q(x) ≤ 0 for all x 6= 0.
• indefinite if Q(x) assumes both positive and negative values.

The classification of a quadratic form is often carried over to the matrix of the form. Thus a positive
definite matrix A is a symmetric matrix for which the quadratic form xT Ax is positive definite.

7.1.3 Geometric View of Principal Axes

When Q(x) = xT Ax, where A is an invertible 2×2 symmetric matrix, and c is a constant, then the set of
all x such that xT Ax = c corresponds to an ellipse (or circle) or a hyperbola. An ellipse is described by
the following equation in standard form: x2

1
a2 + x2

2
b2 = 1 (a > b > 0), where a is the semi-mayor axes and b

is the semi-minor axes. A hyperbola is described by the following equation in standard form: x2
1

a2 − x2
2

b2 = 1
(a > b > 0), where the asymptotes are given by the equations x2 = ± b

ax1.

7.2 Theorems

1. If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

2. An n× n matrix A is orthogonally diagonalizable if, and only if A is a symmetric matrix.
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3. The Spectral Theorem for Symmetric Matrices: An n × n symmetric matrix A has the
following properties:

(a) A has n real eigenvalues, counting multiplicities.

(b) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of
the characteristic equation.

(c) The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to
different eigenvalues are orthogonal.

(d) A is orthogonally diagonalizable.

4. The Principal Axes Theorem: Let A be an n×n symmetric matrix. Then there is an orthogonal
change of variable x = Py, that transforms the quadratic form xT Ax into a quadratic form yT Dy
with no cross-product term.

5. Quadratic Forms and Eigenvalues: Let A be an n × n symmetric matrix. Then a quadratic
form xT Ax is:

(a) positive definite if, and only if the eigenvalues of A are all positive.

(b) negative definite if, and only if the eigenvalues of A are all negative.

(c) positive semidefinite if, and only if one eigenvalue of A is 0, and the others are positive.

(d) negative semidefinite if, and only if one eigenvalue of A is 0, and the others are negative.

(e) indefinite if, and only if A has both positive and negative eigenvalues.
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